Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference?

نویسندگان

  • Ludmila Oliveriusová
  • Pavel Nĕmec
  • Zuzana Králová
  • František Sedláček
چکیده

Evidence for magnetoreception in mammals remains limited. Magnetic compass orientation or magnetic alignment has been conclusively demonstrated in only a handful of mammalian species. The functional properties and underlying mechanisms have been most thoroughly characterized in Ansell's mole-rat, Fukomys anselli, which is the species of choice due to its spontaneous drive to construct nests in the southeastern sector of a circular arena using the magnetic field azimuth as the primary orientation cue. Because of the remarkable consistency between experiments, it is generally believed that this directional preference is innate. To test the hypothesis that spontaneous southeastern directional preference is a shared, ancestral feature of all African mole-rats (Bathyergidae, Rodentia), we employed the same arena assay to study magnetic orientation in two other mole-rat species, the social giant mole-rat, Fukomys mechowii, and the solitary silvery mole-rat, Heliophobius argenteocinereus. Both species exhibited spontaneous western directional preference and deflected their directional preference according to shifts in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Because all of the experiments were performed in total darkness, our results strongly suggest that all African mole-rats use a light-independent magnetic compass for near-space orientation. However, the spontaneous directional preference is not common and may be either innate (but species-specific) or learned. We propose an experiment that should be performed to distinguish between these two alternatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus

Magnetic orientation in mammals has been demonstrated convincingly in only two genera of subterranean mole-rats (Spalax and Cryptomys sp.) by examining the directional placement of nests in radially symmetrical indoor arenas. Mole-rats show a spontaneous directional preference to place their nests to the south or southeast of magnetic north. Using a similar nest-building assay, we show that lab...

متن کامل

Magnetic compass orientation in the blind mole rat Spalax ehrenbergi.

The blind mole rat Spalax ehrenbergi is a solitary, subterranean rodent that digs and inhabits a system of branching tunnels, with no above-ground exits, which it never leaves unless forced to. To survive, the mole rat must be able to orient efficiently in its tunnel system. The sensory channels available for spatial orientation in the subterranean environment are restricted in comparison with ...

متن کامل

Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze

Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mi...

متن کامل

Magnetic orientation in birds

The magnetic field of the earth is an omnipresent, reliable source of orientational information. A magnetic compass has been demonstrated in 18 species of migrating birds. In all species studied with regard to its functional properties, it was found to be an 'inclination compass', i.e. the birds derive directional information from the inclination of the field lines, and thus distinguish between...

متن کامل

The Eastern red-spotted newt Notophthalmus viridescens uses

the geomagnetic field for two forms of spatial orientation: (1) shoreward orientation, which utilizes only directional (‘compass’) information (Phillips, 1986a,b; Phillips and Borland, 1992a,b; Deutschlander et al., 1999a,b, 2000; Phillips et al., 2001) and (2) map-based homing orientation (‘true navigation’), which utilizes both compass and geographic position (‘map’) information (Phillips, 19...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2012